Generic filters
Exact matches only
FS Logoi

Wasserstoffdichtheit kann berechnet werden

Die Hersteller von Elektrolyseuren stehen in aller Regel vor der Herausforderung, einen Dichtheitsnachweis oder einen Nachweis über die Leckage für die Anlage vorzulegen. Die Wasserstoffdichtheit von Anlagen kann berechnet werden. Die Wasserstoffdichtheit von Anlagen kann berechnet werden. Wie das funktioniert, erklärt Stefan Keck, Produktmanager Dichtungen (Hbv.) bei Klinger Germany, im exklusiven Fachbeitrag unseres Partnerportals Industriearmaturen & Dichtungstechnik.

von | 29.04.24

© IAD 03/2023 © Klinger Germany
© IAD 03/2023 © Klinger Germany
Wasserstoffdichte

29. April 2024 | Die Hersteller von Elektrolyseuren stehen in aller Regel vor der Herausforderung, einen Dichtheitsnachweis oder einen Nachweis über die Leckage für die Anlage vorzulegen. Die Wasserstoffdichtheit von Anlagen kann berechnet werden. Die Wasserstoffdichtheit von Anlagen kann berechnet werden. Wie das funktioniert, erklärt Stefan Keck, Produktmanager Dichtungen (Hbv.) bei Klinger Germany, im exklusiven Fachbeitrag unseres Partnerportals Industriearmaturen & Dichtungstechnik.

Definition technische Dichtheit

Eine Flanschverbindung nach DIN EN 1092 gilt nach aktuellem Stand der Technik als (dauerhaft) technisch dicht, wenn ein rechnerischer Nachweis nach EN 1591-1 bzw. Finite-Elemente-Analyse (FEM) für eine Leckageklasse L0,01 erbracht werden kann (TA-Luft Ausgabe 18. August 2021, VDI 2290 Ausgabe Juni 2012). Dies gilt grundsätzlich auch für H₂-Anwendungen. Die für die Flanschberechnung zugrunde liegenden Dichtungskennwerte werden aber normalerweise nach DIN EN 13555 mit Helium ermittelt. Helium ist nach Wasserstoff das chemische Element mit der zweitgeringsten Dichte und kommt hinsichtlich der Größe dem Wasserstoff am nächsten. Aufgrund der unterschiedlichen Werte für Gasviskosität und Gasdichte bei annähernd gleichen kinetischen Durchmessern, sind jedoch im Einzelfall andere Leckageraten zu erwarten.

Ein allgemein gültiger Umrechnungsfaktor im Vergleich zu Helium lässt sich nach heutigem Wissensstand nicht angeben, da dieser Faktor von vielen weiteren Parametern abhängt, wie z.B. den Strömungsverhältnissen, Permeationsund Adsorptionsvorgänge im Dichtungswerkstoff etc.

Welche Möglichkeiten stehen unter diesen Bedingungen für einen Nachweis an Flanschen gemäß Din En 1092-1 Bis -4 zur Verfügung?

Option 1: Der typbasierte Bauteilversuch zur Bestimmung der Leckagerate einer Flanschverbindung.

Wasserstoffdichte Leckagekurven KlingerSIL® C 4430

Bild 2: Wasserstoffdichte Leckagekurven KlingerSIL® C 4430 (© Klinger Germany)

Für die Prüfsituation wird die erreichbare Flächenpressung des schwächsten Flansches der PN-Reihe angenommen. Diese Flächenpressung Qmin(LBauteilversuch) dient dazu, in einem Laborversuch unter Verwendung eines Massenspektrometers mit dem Prüfmedium H₂ unter Anlagendruck nachzuweisen, dass die Kombination aus Flansch, Dichtung und Schrauben unter den gegebenen Prozessbedingungen die geforderte Dichtheitsklasse einhält. Diese Dichtheitsklassen können entweder gemäß DIN 3535-6 L0,1 mit der spezifischen Leckagerate ≤ 0,1 [mg s−1 m−1] bzw. TA-Luft L0,01 mit der spezifischen Leckagerate ≤ 0,01 [mg s−1 m−1] oder höher vergl. DIN EN 13555 Tabelle 1 — Dichtheitsklassen sein. Zuvor muss eine Temperaturauslagerung bis zur maximalen Prozesstemperatur erfolgen, um die Relaxation des Systems zu simulieren. Basierend auf diesem Nachweis ist eine Drehmomenttabelle zu entwickeln, die für alle weiteren Nennweiten der PN-Reihe eine Montageflächenpressung Qmin(LDrehmomenttabelle) garantiert, für die gilt: Qmin(LBauteilversuch) ≤ Qmin(LDrehmomenttabelle).

Eine fachgerechte und qualitätskontrollierte Montage mit entsprechender Dokumentation ist Voraussetzung für einen solchen Nachweis. Diese Vorgehensweise stellt für den Anlagenbauer/Betreiber einen Mehraufwand dar und wird daher sehr wahrscheinlich nicht sehr oft zum Nachweis herangezogen werden.

Option 2: individuelle Messung am Flansch in der Anlage unter Betriebsbedingungen.

BiDiese Variante repräsentiert wohl die aufwändigste Vorgehensweise, da hier mittels der Spülgasmethode die entstehenden Leckagen unter Betriebsbedingungen gemessen werden. Dafür ist es erforderlich, die zu messenden Flansche einzuhausen. Auch diese Methode stellt für den Anlagenbauer/Betreiber einen erheblichen Mehraufwand dar und wird daher sehr wahrscheinlich nicht sehr oft zum Nachweis herangezogen werden.

Option 3: Berechnung nach EN 1591-1 als der gebräuchlichste Weg zum Nachweis.

Wasserstoffdichte Leckagekurven Klinger®top Chem 2003

Bild 3: Wasserstoffdichte Leckagekurven Klinger®top Chem 2003 (© Klinger Germany)

Bei der Auslegung der Anlagen muss ein Festigkeitsnachweis des Flanschsystems erbracht werden. Es ist sinnvoll, den Dichtklassennachweis über eine Berechnung gemäß EN 1591-1 bzw. Finite-Elemente-Analyse (FEM) für eine Leckageklasse LN zu nutzen, da beide Methoden gemäß VDI2290 sowohl die Festigkeit der Flanschverbindung als auch die Dichtheit nachweisen. Maßgebend für die Berechnung und den Nachweis der Wasserstoffdichtheit in Bezug auf die Leckageklasse L sind die Kennwerte der Dichtung, wie Mindestflächenpressung im Montagezustand Qmin(L) und die Mindestflächenpressung im Betriebszustand QSmin(L) in Abhängigkeit von der Anfangsflächenpressung QA.

Die Dichtungskennwerte gemäß EN 13555 standen bisher ausschließlich aus Messungen mit Helium zur Verfügung. Es war jedoch keineswegs sicher, ob diese Kennwerte auf Wasserstoff übertragbar sind. Daher entschied sich die KLINGER Dichtungstechnik dazu, für mehrere ausgewählte Faser- und PTFE-Materialien aus dem Produktsortiment Versuche gemäß DIN EN 13555 unter Verwendung des Prüfmediums Wasserstoff durchführen zu lassen, abweichend vom empfohlenen Prüfmedium Helium.

Diese Versuche nahm das akkreditierte unabhängige Prüfinstitut AMTEC Messtechnischer Service GmbH vor. Ziel der Untersuchungen war eine seriöse Gegenüberstellung beider Messungen, da diese Werte für die Dichtheit und Festigkeit und damit für die Sicherheit der Flanschverbindung relevant sind.

Ergebnisse und Erkenntnisse

In vielen Fällen zeigte sich eine weitgehende Übereinstimmung der Kurven wie im Beispiel des KLINGERSIL®C-4430 (Bild 2). Es existieren aber auch Messwerte, die zeigen, dass erhebliche Unterschiede zwischen den Messungen bestehen können, wie am Beispiel des KLINGER®top-chem 2003 zu erkennen ist. Im konkreten Fall liegt die Wasserstoffleckagekurve circa eine Zehnerpotenz unter der des Heliums (Bild 3).

Mit den erzielten Messergebnissen kann KLINGER sowohl mit heliumbasierten als auch mit wasserstoffbasierten Dichtungskennwerten eine Berechnung nach EN 1591-1 für die Druckstufen 10 bar und 40 bar durchführen und damit die Leckageklasse in Verbindung mit der Flanschfestigkeit exakt nachweisen. Mit allen getesteten Dichtungswerkstoffen ist es möglich, die Anforderungen der TA-Luft und damit auch der DIN 3535-6 einzuhalten.

Fazit

Die sehr gute chemische Beständigkeit sowie der große Druck- und Temperatureinsatzbereich machen die KLINGER-Dichtungsmaterialien zu einer ausgezeichneten Wahl – nicht nur in Wasserstoff erzeugenden Anlagen, sondern auch in angrenzenden Bereichen, in denen beispielsweise mit Ammoniak, Methylalkohol, oder mit Benzyltoluol gearbeitet wird. Dies eröffnet dem Anwender die Möglichkeit zur Standardisierung über viele Bereiche hinweg mit kostengünstigen, vielfach erprobten und daher äußerst zuverlässigen Dichtungslösungen.

(Quelle: Industriearmaturen 03/2023/Stefan Keck)

Jetzt Newsletter abonnieren

Brennstoff für Ihr Wissen, jede Woche in Ihrem Postfach.

Hier anmelden

„Wir schaffen völlig neue Wertschöpfungsketten“
„Wir schaffen völlig neue Wertschöpfungsketten“

Das 2020 gegründete Start-up Green Hydrogen Technology (GHT) produziert hochreinen Wasserstoff aus Abfällen. Damit nicht genug: Das dezentrale Verfahren von GHT soll ohne externe Energiezufuhr auskommen. Im Rahmen des Modellprojekts zur Kreislaufwirtschaft will die GHT ihre erste Wasserstoffanlage auf dem Gelände des baden-württembergischen Recyclingunternehmens ETG errichten. Der gewonnene grüne Energieträger soll dann die Wasserstoff-Lkw-Flotte von Hylane antreiben. Wie die Technologie der Anlage funktioniert und was das Unternehmen noch vorhat, erklärt CEO Robert Nave im Interview.

mehr lesen
Mobilitäts-Mittwoch: über 100 H2-Busse in Köln und Europas leistungsstärkste H2-Tankstelle
Mobilitäts-Mittwoch: über 100 H2-Busse in Köln und Europas leistungsstärkste H2-Tankstelle

Mobilitäts-Mittwoch: H2 Mobility plant „Europas leistungsstärkste Wasserstoff-Tankstelle” in Düsseldorf. Über 5 Tonnen des Energieträgers sollen dort künftig täglich vertankt werden können. Die Regionalverkehr Köln GmbH hat 18 Wasserstoff-Gelenkbusse erhalten. Damit erweitert sich die H2-Flotte des Verkehrsbetriebs auf über 100 Stück. Auch die Stadt Gelsenkirchen hat neue Wasserstoffbusse erhalten. Seit Ende August sind 5 wasserstoffbetriebene Busse im Einsatz. Bis 2030 sollen es 60 Stück werden.

mehr lesen
Gengenbach: Schweizer Unternehmen plant dritten Wasserstoff-Hub
Gengenbach: Schweizer Unternehmen plant dritten Wasserstoff-Hub

Das Schweizer Unternehmen Infener und die Stadt Gengenbach haben am 16. September die Planungen für einen Wasserstoff-Hub vorgestellt. Der 20-MW-Hub könne jährlich bis zu 2.000 Tonnen grünen Wasserstoff produzieren. So soll der Baden-Württembergische Landkreis Ortenaukreis dezentral, wirtschaftlich und klimaneutral mit Energie versorgt werden. 

mehr lesen
H2 on air: Folge 4 – Die Wasserstoff-Importstrategie
H2 on air: Folge 4 – Die Wasserstoff-Importstrategie

Mit „H2 on air“ wollen wir Fakten in die Wasserstoff-Debatte bringen. Kaum jemand wäre dafür besser geeignet als Prof. Dr. Michael Sterner. Der renommierte Wasserstoff-Experte ist Mitglied im höchsten Wasserstoff-Gremium Deutschlands, dem Nationalen Wasserstoffrat. Außerdem gilt er als Erfinder von Power-to-X, einem Konzept zur Energiespeicherung, das seit 15 Jahren weltweit für Furore sorgt.

mehr lesen
H2Global: Deutschland plant 400 Millionen Euro für H2-Importe aus Australien
H2Global: Deutschland plant 400 Millionen Euro für H2-Importe aus Australien

Australien hat mit der deutschen Regierung ein Abkommen über 400 Millionen Euro für Investitionen in australische Wasserstoffprojekte unterzeichnet. Die Vereinbarung ist Teil des Fördermechanismus H2Global. Ziel ist, australischen H2-Produzenten eine sichere Abnahme zu garantieren und so den Ausbau großskaliger Anlagen zur Produktion grünen Wasserstoffs in Australien anzukurbeln. 

mehr lesen

H2 Talk

Anke Alvermann-Schuler Gasunie Deutschland Hyperlink
Dr. Alexander Redenius SALCOS

Publikationen

Netzmeister 2023

Netzmeister 2023

Erscheinungsjahr: 2023

Für die Instandhaltung der Gas-, Wasser- und Fernwärmerohrnetze, die den mit Abstand größten Teil des Anlagevermögens von Versorgungsunternehmen ausmachen, trägt der Netzmeister die Verantwortung. Um den täglichen Anforderungen gerecht werden ...

Zum Produkt

Wasserstoff in der Praxis, Bd. 2: Gebäude- und Messtechnik

Wasserstoff in der Praxis, Bd. 2: Gebäude- und Messtechnik

Erscheinungsjahr: 2022

Das Buchreihe „Wasserstoff in der Praxis“ vermittelt Praktikern wichtige Informationen über den Stand der Technik und zukünftige Entwicklungen. Im 2. Band stehen die Themen “Gebäudetechnik” und “Messtechnik” im Fokus. ...

Zum Produkt

Wasserstoff in der Praxis, Bd. 1: Infrastruktur

Wasserstoff in der Praxis, Bd. 1: Infrastruktur

Erscheinungsjahr: 2021

Das Buchreihe „Wasserstoff in der Praxis“ vermittelt Praktikern wichtige Informationen über den Stand der Technik und zukünftige Entwicklungen. Im 1. Band werden die Herausforderungen dargestellt, die Wasserstoff an die Gasinfrastruktur und ...

Zum Produkt

Datenschutz
h2-news.de, Inhaber: Vulkan-Verlag GmbH (Firmensitz: Deutschland), würde gerne mit externen Diensten personenbezogene Daten verarbeiten. Dies ist für die Nutzung der Website nicht notwendig, ermöglicht aber eine noch engere Interaktion mit Ihnen. Falls gewünscht, treffen Sie bitte eine Auswahl:
Datenschutz
h2-news.de, Inhaber: Vulkan-Verlag GmbH (Firmensitz: Deutschland), würde gerne mit externen Diensten personenbezogene Daten verarbeiten. Dies ist für die Nutzung der Website nicht notwendig, ermöglicht aber eine noch engere Interaktion mit Ihnen. Falls gewünscht, treffen Sie bitte eine Auswahl: